To the Max(最大子矩阵)

描述

传送门:hdu-1081

 Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

As an example, the maximal sub-rectangle of the array:

 0 -2 -7 0
 9  2 -6 2
 -4  1 -4 1
 -1  8 0 -2

is in the lower left corner:

 9 2
 -4 1
 -1 8

and has a sum of 15.

Input

 The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Examples

  • intput

    1
    2
    3
    4
    5
    4
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
  • output

    1
    15

思路

  • 求最大子矩阵,可借用最大子段和的思想来做,如下图,要求宽为$(i-j)$这么宽的最大区间和,就可以把i到j行按列加到一起,然后就转换成了求一维数组最大子段和,每一个元素就是红色区域。
  • 对于矩阵$a[n][n]$,构造一个dp数组,使$dp[i][j]$为$dp[0][0]$到$dp[i][j]$的和。那么下图矩阵a的红色区域就可以表示为: $dp[i][k]-dp[i][k-1]-dp[j-1][k]+dp[j-1][k-1]$,这样就实现了$O(1)$查找区间和,而dp数组只需$O(N^2)$就能求出。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,n) for(int i=a;i<n;++i)
#define repd(i,a,n) for(int i=n-1;i>=a;--i)
#define CRL(a) memset(a,0,sizeof(a))
const int N=105;
int dp[N][N];

int AC(int n){

rep(i,1,n+1) //求dp数组
rep(j,1,n+1)
dp[i][j]+=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];

int Max=dp[1][1];
rep(i,1,n+1) //i,j,k即为上图的i,j,k
rep(j,1,i+1){
int sum=0;
rep(k,1,n+1){
int tem=dp[i][k]-dp[i][k-1]-dp[j-1][k]+dp[j-1][k-1];
sum= sum>0? sum+tem:tem;
if(sum>Max) Max=sum;
}
}
return Max;
}

int main()
{
std::ios::sync_with_stdio(false);
int a[N][N],n;
while(cin>>n){
rep(i,1,n+1)
rep(j,1,n+1)
cin>>dp[i][j];

cout<<AC(n)<<endl;
}
return 0;
}
-------------本文结束 感谢您的阅读-------------

本文标题:To the Max(最大子矩阵)

文章作者:Armin

发布时间:2018年08月15日 - 01:08

最后更新:2018年08月20日 - 00:08

原始链接:http://x-armin.com/To-the-Max/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。

小礼物走一波